Surname	Centre Number	Candidate Number	
First name(s)		2	

GCE A LEVEL

A400U10-1

WEDNESDAY, 5 JUNE 2024 – AFTERNOON

BIOLOGY – A level component 1 Energy for Life

2 hours

For Exa	For Examiner's use only			
Question	Maximum Mark	Mark Awarded		
1.	15			
2.	18			
3.	18			
4.	19			
5.	21			
6.	9			
Total	100			

ADDITIONAL MATERIALS

A calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

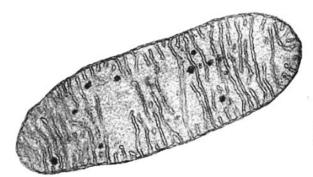
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

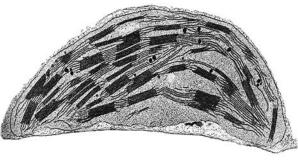
INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 6.

The quality of written communication will affect the awarding of marks.




			Answer all questions.	Exam
1.	ATP	has be	een described as the universal energy currency in cells.	
	(a)	(i)	Draw and label a simple diagram to show the structure of ATP.	[2]
		(::)	NAVitle references to the attractions of ATD evaluation valuation recent by the towns	
		(ii)	With reference to the structure of ATP , explain what is meant by the term universal energy currency .	[2]
		•••••		
		•••••		
		(iii)	State one structural difference between the nucleotides found in DNA compa	ared
		()	to those found in an ATP nucleotide.	[1]
		•••••		

PMT

(b)

a mitochondrion

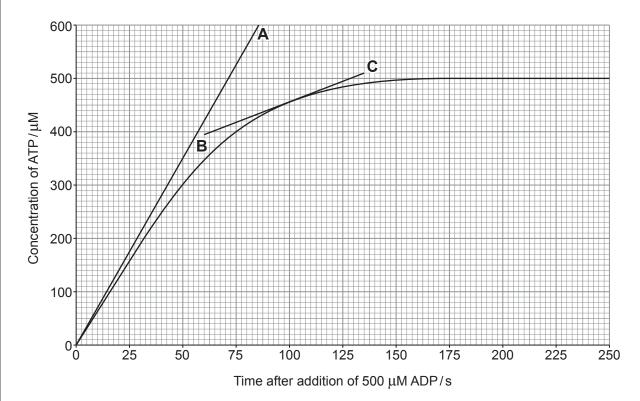
a chloroplast

The endosymbiotic theory proposes that both mitochondria and chloroplasts evolved from prokaryotic ancestors.

(i)	Identify two structural features of mitochondria and chloroplasts that are also found in prokaryotic cells.	[2]
	l	
	II	
(ii)	Name the two Domains which contain prokaryotic organisms.	[1]

In both mitochondria and chloroplasts ATP synthesis requires the movement of protons and electrons, which results in the transfer of energy to ATP molecules.

Complete the table below to identify where in chloroplasts and mitochondria the (iii) following processes in ATP synthesis take place.


Process in ATP synthesis	Chloroplasts	Mitochondria
Protons are pumped across this membrane by proton pumps using energy from electrons.		
A high concentration of protons is formed here.		

© WJEC CBAC Ltd. (A400U10-1) Turn over.

(c) A laboratory experiment was carried out on isolated mitochondria to determine the rate of ATP synthesis. Isolated mitochondria were mixed with $500\mu\text{M}$ of ADP and excess inorganic phosphate. The concentration of ATP was recorded every 25 seconds over a period of 250 seconds. The results are shown in **Graph 1.3**.

Graph 1.3

(i) Use the tangent marked **B–C** to calculate the rate at 100 seconds following the addition of ADP and **state the unit** of your calculated value. **Show how you obtained the values used in your calculation on Graph 1.3**.

Rate at 100s = _____ unit = ____

(ii) Explain why the initial rate calculated using the line marked **A** was higher than the rate at 100 s. [1]

15

[4]

PMT

01	
1001	
٩40	25

2.	Due to sustait believ	o the inabili e tha	are consumers and depend on producers as sources of nutrients and energy. increasing human population size, questions have been raised about the ty of human consumption of farmed and natural food sources. Some scientists twe are approaching the maximum human population that can be sustained by not productivity levels.	
	(a)	(i)	State the types of nutrition used by the following to obtain energy:	[1]
			producers	
			consumers	
		(ii)	Plant productivity can be expressed as GPP or NPP. Explain why only NPP is available to consumers.	[2]
		(iii)	Human population density is increasing exponentially. Explain what is meant by the term exponential growth .	[1]
		(iv)	State the term used to describe the phrase: ' maximum human population that can be sustained by current plant producti levels.'	vity [1]

o) NI wl	PP is limited by the amount of light energy available to plants and the efficiency at nich light energy can be transferred to organic compounds.	
(Deserts and arctic-alpine regions have very low NPP per km ² . Identify one density-independent factor that accounts for the very low NPP per km ² of both regions.	
	Explain your answer. [2	2]
••••		

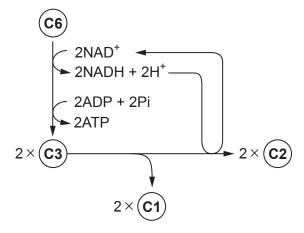
••••		
••••		

(i	readily by water than shorter wavelengths (blue light).	
	Use this information and your own knowledge of photosynthesis to explain why marine ecosystems only account for 40.8% of global NPP even though they cove	
	71.1% of the world's surface.	3]
••••		

••••		

PMT

_
-


(c)	matt	987, there were approximately 5×10^9 humans on planet Earth. The mass of organi er produced and consumed each year is usually expressed in petagrams (Pg), re 1 Pg = 10^{15} g.	С	
	(i)	Calculate the annual consumption of organic matter by humans in 1987 if the average consumption of organic matter was 500 g per human per day. Express your answer in petagrams to two significant figures. [3]	3]	
		Annual human consumption of organic matter =P	g 'g	
	(ii)	In 1987, it was estimated that humans harvested 1.15 Pg of global NPP and directly consumed 0.76 Pg of organic matter derived from plants. Calculate the percentage of harvested NPP lost or wasted by the human population at that time.	2]	
	Р	ercentage of harvested NPP lost or wasted by humans =	%	
	(iii)	Annual consumption of animal products by humans in 1987 was estimated at 0.15 Pg. Estimated global consumption of plants by livestock in 1987 was 2.2 Pg.		
		It has been recommended that humans eat fewer animal products as one way of improving sustainability. Use the data provided to justify this conclusion.	3]	
	•····			
	*********		[

3. Yeast (Saccharomyces cerevisiae) is a unicellular fungus that feeds saprotrophically on a range of substrates which are rich in sugars. Yeast is used extensively in the production of bread and sparkling (fizzy) wine through a process known as fermentation. Fermentation is summarised in **Image 3.1**.

Image 3.1

(a)	(i)	Explain what is meant by the term saprotrophically .	[1]
	•••••		
	•••••		
	•····		

(ii)	Name the type of respiration shown in Image 3.1 .			

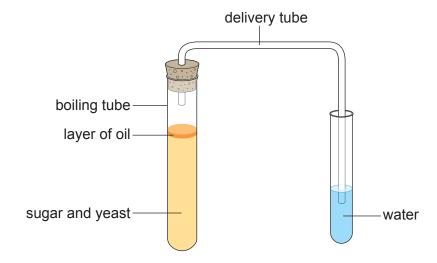
© WJEC CBAC Ltd.

A400U101 09

(iii)		nage 3.1, C1, C2, C3 and C6 indicate the number of carbon atoms in differ nic molecules.
	l.	Name the molecules that contain 1, 2 and 3 carbon atoms.
		C1
		C2
		C3
	II.	Suggest why the C1 molecule is important when producing bread and w both the C1 and C2 molecules are used when producing sparkling wine
	•••••	
(iv)	they	ast cells respire for a long time using the process summarised in Image 3 eventually die. When animal cells respire in a similar way it does not cau death. Explain these statements.
(iv)	they	eventually die. When animal cells respire in a similar way it does not cau-
(iv)	they	eventually die. When animal cells respire in a similar way it does not caus
(iv)	they	eventually die. When animal cells respire in a similar way it does not caus
(iv)	they	eventually die. When animal cells respire in a similar way it does not caus
(iv)	they	eventually die. When animal cells respire in a similar way it does not caus
(iv)	they	eventually die. When animal cells respire in a similar way it does not cau-
(iv)	they	eventually die. When animal cells respire in a similar way it does not caus
(iv)	they	eventually die. When animal cells respire in a similar way it does not cau-
(iv)	they	ast cells respire for a long time using the process summarised in Image 3 eventually die. When animal cells respire in a similar way it does not causdeath. Explain these statements.

© WJEC CBAC Ltd.

(A400U10-1) Turn over.


(b) During the production of sparkling wine, additional sugar and yeast are added during a second fermentation.

An experiment was carried out to determine the best sugar to use when producing sparkling wine.

For each sugar, the following method was followed:

- 1. Add 10 cm³ of 1 g cm⁻³ yeast suspension to a boiling tube.
- 2. Add 10 cm³ of a 2 g cm⁻³ solution of the sugar being tested to a test tube.
- 3. Place both test tubes in a water bath at 30°C and leave for 5 minutes.
- 4. Pour the sugar solution into the yeast suspension and mix well.
- 5. Cover the surface with a thin layer of oil and place the bung with the delivery tube into the boiling tube as shown in **Image 3.2**.

Image 3.2

- 6. When gas bubbles emerge regularly from the delivery tube, count the number released in one minute.
- 7. Repeat step 6 for two more periods of 1 minute.

Examiner

PMT

	(i)		st tubes were left why this was ned		th for 5 minutes i	n step 3.	[1]
	(ii)	Explain	the purpose of th	ne layer of oil.			[2]
	•·····						
(c)		r naturally eriment.	occurring sugars	s were tested. T	able 3.3 shows t	he results of this	
	Tabl	le 3.3					
			Num	nber of bubbles	produced in 1 m	inute	
	٤	Sugar		-	T		

Sugar	Number of bubbles produced in 1 minute					
Sugar	Trial 1	Trial 2	Trial 3	mean		
fructose	13	14	14	14		
glucose	31	48	45	41		
lactose	0	0	0	0		
sucrose	12	8	11	10		

Both glucose and fructose are sugars containing six carbons. Lactose and sucrose are disaccharides.

(i)	Explain why glucose and fructose are known as structural isomers of each other	[1]
		<u>.</u>

© WJEC CBAC Ltd. (A400U10-1) Turn over.

4400U101

Image 3.4 shows the hydrolysis of sucrose catalysed by the enzyme sucrase.

Image 3.4

sucrose

monosaccharide **Y**

monosaccharide **Z**

(11)	Name reactant X, m	onosaccharide Y and monosaccharide Z in Image 3.4.	[2]
	reactant X		· · · · · · · · · · · · · · · · · · ·
	monosaccharide Y		· · · · · · · · · · · · · · · · · · ·
	monosaccharide Z		
(iii)		y using sucrose as the respiratory substrate resulted in fewored than when using glucose.	wer [1]

PMT

Lactose is the sugar found in milk. Image 3.5 shows the structure of lactose.

Image 3.5

(iv)	Suggest an explanation for the results of the experiment for lactose shown in Table 3.3 .	[2]
		••••
•••••		•••••

A400U101 13

18

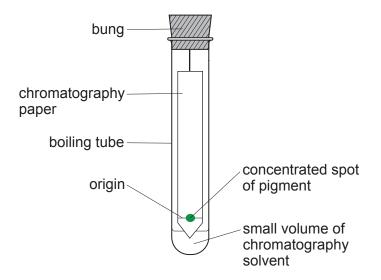
4. Photosynthetic pigments are compounds which absorb some wavelengths of light and reflect others.

Image 4.1 shows the molecular structure of two photosynthetic pigments found in chloroplasts.

Image 4.1

chlorophyll
$$a$$
 H_3C H_3C CH_3 CH_3

carotene


- (a) (i) Name the inorganic ion **X** found in chlorophyll *a*. [1]
 - (ii) Hydrocarbons, such as carotene, contain atoms of carbon and hydrogen only. Apart from the presence of ion **X**, explain why chlorophyll *a* cannot be classified as a hydrocarbon. [1]

(iii)	Carotene is a hydrophobic molecule.
	Suggest why carotene molecules are found embedded in thylakoid membranes rather than in the stroma.
•••••	
(iv)	Research has shown that carotenes have a similar function in membranes to tha
	of cholesterol. Describe this function.
•••••	
•••••	
	Question continued overleaf

(b) In a school laboratory, photosynthetic pigments can be separated and identified using chromatography. This is shown in **Image 4.2**.

Image 4.2

(i) Propanone is one of the solvents used to extract and separate the pigments. The safety symbol shown in **Image 4.3** is shown on bottles containing this solvent.

Image 4.3

Explain why the method for this practical should include the instruction to make sure that there are no naked flames when this practical is carried out.	1]
(ii) Explain why a pencil is used to draw the origin line on the chromatography paper.	1]

© WJEC CBAC Ltd. (A400U10-1)

(c) Paper chromatography was used to separate the pigments found in the leaves of a plant. The results are shown in **Image 4.4**. Reference values for the main photosynthetic pigments are given in **Table 4.5**.

Image 4.4

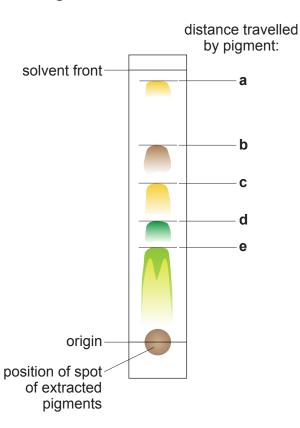


Table 4.5

Reference I	Rf Values
Pigment	Rf
beta carotene	0.96
chlorophyll a	0.58
chlorophyll b	0.48
phaeophytin	0.70
xanthophylls	0.15 to 0.40

Pigments can be identified by calculating an Rf value and comparing this against reference values obtained using the same solvent and chromatography paper.

(i) I. Use the following formula to calculate the Rf value for pigment **b**. [2]

$$Rf = \frac{\text{distance travelled by pigment}}{\text{distance travelled by solvent front}}$$

Rf = _____

II. Use your calculated Rf value and **Table 4.5** to identify pigment **b**. [1]

© WJEC CBAC Ltd. (A400U10-1) Turn over.

		reference Rf values obtained using the same solvent and chromatography paper. [3]

(d)		ge 4.6 summarises the light-dependent and light-independent stages of cosynthesis.
	lma	ge 4.6
		particles of light energy
		nign (
car	otene	
car	otene	energy → chlorophyll a energy electrons light-dependent reactions
car	otene	energy — chlorophyll a
car	rotene	energy — chlorophyll a energy electrons light-dependent reactions
car	rotene	energy — chlorophyll a energy electrons light-dependent reactions
car	rotene	energy — chlorophyll a — energy electrons electrons product S product T
car	rotene	energy — chlorophyll a — energy electrons electrons product S product T
can	rotene	energy — chlorophyll a — energy electrons energy product S product T photolysis light-dependent reactions
car		energy — chlorophyll a — energy — light-dependent reactions electrons — product S product T — photolysis — light-independent reactions — triose phosphate
car	(i)	energy electrons energy product S product T photolysis light-independent reactions triose phosphate State the term used to describe the particles of light energy. [1]
car		energy — chlorophyll a — energy — light-dependent reactions electrons — product S product T — photolysis — light-independent reactions — triose phosphate

© WJEC CBAC Ltd. (

(iii)	At high light intensities, carotene passes energy to other electron acceptor molecules rather than to chlorophyll <i>a</i> . This reduces the rate of photolysis to prevent chlorophyll <i>a</i> being damaged. Some weedkillers inhibit the synthesis of carotene. Using all the information provided, explain one way in which this type of weedkiller can cause plant death.
•••••	
•••••	

•••••	
•••••	

Turn over.

[2]

5. Avocados (*Persea americana*) have become a popular food in all parts of the world. More than 50% of world production is based in one Central American country and most are grown in a single region of this country.

To meet global demand, nearly 90 000 hectares (900 000 000 m²) of land have been converted to avocado plantations. **Image 5** shows an avocado plantation.

Image 5

(a) With reference to **Image 5** suggest how avocado production may have contributed to:

•••••		
•••••		
(ii)	climate change.	[2]
. ,		[4]
		[<i>L</i>]

© WJEC CBAC Ltd.

biodiversity loss;

(A400U10-1)

hat is meant by the term climax community. Thow the following abiotic factors would have changed following the nment of the avocado plantation. your answers. This moisture content; This moisture content;	[2]
nment of the avocado plantation. your answers. il moisture content;	[2]
il fertility.	
il fertility.	1
	[3]
a method that could be used to estimate and compare the plant sity of the original forest and the avocado plantation.	[4]
	a method that could be used to estimate and compare the plant sity of the original forest and the avocado plantation.

In North America, 95% of all avocados consumed are of the Hass variety and most are imported from Central America. New varieties of avocado are produced by cross-pollination. Avocados have a high degree of genetic polymorphism. Due to this, most attempts to breed useful new varieties have low success rates. (i) Use the information to suggest why attempts to breed new useful varieties of avocado have low success rates. [2] (ii) The Hass avocado is highly susceptible to a soil-borne pathogen, <i>Phytophthora cinnamomi</i> , which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant. Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and conclude why infected plants wilt and eventually die. [3]	In North America, 95% of all avocados consumed are of the Hass variety and most are imported from Central America. New varieties of avocado are produced by cross-pollination. Avocados have a high degree of genetic polymorphism. Due to this, most attempts to breed useful new varieties have low success rates. (i) Use the information to suggest why attempts to breed new useful varieties of avocado have low success rates. [2] (ii) The Hass avocado is highly susceptible to a soil-borne pathogen, <i>Phytophthora cinnamomi</i> , which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant. Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and conclude why infected plants wilt and eventually die. [3]			
(ii) The Hass avocado is highly susceptible to a soil-borne pathogen, <i>Phytophthora cinnamomi</i> , which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant. Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and conclude why infected plants wilt and eventually die. [3]	(ii) The Hass avocado is highly susceptible to a soil-borne pathogen, <i>Phytophthora cinnamomi</i> , which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant. Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and conclude why infected plants wilt and eventually die. [3]	impo cros Avoc	orted from Central America. New varieties of avocado are produced by s-pollination. cados have a high degree of genetic polymorphism. Due to this, most attempts to	
cinnamomi, which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant. Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and conclude why infected plants wilt and eventually die. [3]	cinnamomi, which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant. Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and conclude why infected plants wilt and eventually die. [3]	(i)	Use the information to suggest why attempts to breed new useful varieties of avocado have low success rates.	[2]
cinnamomi, which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant. Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and conclude why infected plants wilt and eventually die. [3]	cinnamomi, which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant. Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and conclude why infected plants wilt and eventually die. [3]			
		(ii)	cinnamomi, which causes a disease called root rot. Infected plants wilt easily due to the pathogen affecting transpiration in the plant Leaf death follows as a result. Use the information given to identify the tissue affected by this pathogen and	t.
	ı			

(iii)	Some wild species of avocado show resistance to <i>P. cinnamomi</i> . Current practices in establishing avocado plantations are leading to some wild species becoming extinct.	
	Explain why it is important that these wild species are conserved and suggest two ways of conserving them for the future.	[2]
•••••		
•••••		
•••••		

Turn over.

i k t	In 2004, it was estimated that approximately 18% of the human population lacked access to safe drinking water. In most industrialised nations, samples of drinking water are cultured in laboratories. Any pacteria present are identified using microscopic methods. The samples are monitored for the presence and level of different types of faecal bacteria, some of which can be pathogenic. Bacterial load (the number of bacteria per cm³) is determined using a viable count.
(]]	State the conditions needed to culture bacteria in a laboratory and explain why each of these conditions is required. Describe how different types of bacteria can be identified using microscopic methods. Explain what is meant by a viable count and describe how you could determine the bacterial oad of a sample of drinking water. (Details of aseptic technique are not required.) [9 QER]

			Examine only
			Jilly
•••••	 	 	

Exa
,
,

	Examin only
	Offity
	9
END OF DARED	
END OF PAPER	

© WJEC CBAC Ltd. (A400U10-1) Turn over.

Question	Additional page, if required. Write the question number(s) in the left-hand margin.	Exa
number	Write the question number(s) in the left-hand margin.	°

